Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure1

نویسندگان

  • Rakesh K. Jain
  • Laurence T. Baxter
چکیده

The therapeutic efficacy of monoclonal antibodies (MAbs), bound to radionuclides, chemotherapeutic agents, toxins, growth factors, or effec tor antibodies, depends upon their ability to reach their target in vivo in adequate quantities. Despite the high vascular permeability and intersti tial transport coefficients in tumor tissue compared to several normal tissues, MAbs and their fragments do not distribute homogeneously in a tumor. Heterogeneity of tumor-associated antigen expression alone can not explain this maldistribution of MAbs in tumors. We propose that in addition to the heterogeneous blood perfusion, hindered diffusion in the interstitium, and extravascular binding of MAbs, elevated interstitial pressure is responsible for the poor penetration of MAbs into tumors. Elevated interstitial pressure principally reduces the driving force for extravasation of fluid and macromolecules in tumors, and also leads to an experimentally verifiable, radially outward convection which opposes the inward diffusion. We present here mathematical models for transport of fluid and macromolecules in a tumor. To illustrate the significance of elevated interstitial pressure, these models are used to describe the interstitial pressure, interstitial fluid velocity, and concentration of nonbinding macromolecules as a function of radial position in a uniformly perfused tumor. The key result of these models is that the filtration of fluid from blood vessels in a uniformly perfused tumor is (a) spatially heterogeneous, (A) a result of elevated interstitial pressure, and (c) sufficient to explain the heterogeneous distribution of macromolecules in tumors. Nonuniform blood flow, and extravascular binding would enhance this heterogeneity in the solute distribution considerably. The results of the models also agree with the following experimental data: (a) tumor interstitial pressure is low in the periphery and it increases toward the center of the tumor; (A) the radially outward fluid velocity at the tumor periphery predicted by the model is of the same order of magnitude as measured in tissueisolated tumors; and (c) immediately after bolus injection, the concentra tion of macromolecules is higher in the periphery than in the center; however, at later time periods the peripheral concentration is lower than in the center. These results have significant implications not only for MAbs and their fragments, but for other biologically useful macromole cules (e.g., cytokines) produced by genetic engineering for cancer diag nosis and treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure.

The therapeutic efficacy of monoclonal antibodies (MAbs), bound to radionuclides, chemotherapeutic agents, toxins, growth factors, or effector antibodies, depends upon their ability to reach their target in vivo in adequate quantities. Despite the high vascular permeability and interstitial transport coefficients in tumor tissue compared to several normal tissues, MAbs and their fragments do no...

متن کامل

Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors.

The efficacy in cancer treatment of monoclonal antibodies or other macromolecules bound to radionuclides, chemotherapeutic agents, toxins, enzymes, growth factors, or effector antibodies has been limited by their inability to reach their target in vivo in adequate quantities. Heterogeneity of tumor-associated antigen expression alone has failed to explain the nonuniform uptake of antibodies. As...

متن کامل

Physiological Barriers to Delivery of Monoclonal Antibodies and Other Macromolecules in Tumors1

The efficacy in cancer treatment of monoclonal antibodies or other macromolecules bound to radionuclides, chemotherapeutic agents, toxins, enzymes, growth factors, or effector antibodies has been limited by their inability to reach their target in vivo in adequate quantities. Heterogeneity of tumor-associated antigen expression alone has failed to explain the nonuniform uptake of antibodies. As...

متن کامل

Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts.

Cancer therapy based on tumor-selective macromolecules may fail due to the elevated interstitial fluid pressure (IFP) that reduces the transvascular and interstitial convection in solid tumors. Modulation of the tumor extracellular matrix (ECM) may reduce IFP and enhance transvascular filtration and interstitial transport of macromolecules. We therefore measured the effect of the ECM-degrading ...

متن کامل

Therapeutic Applications of Monoclonal Antibodies in Multiple Sclerosis

Despite the various therapies available, the use of monoclonal antibodies is a highly specific approach that has only recently been of interest to researchers. The properties of antibodies have led to their use in the treatment of various diseases, including cancer, Alzheimer's disease, diabetes and multiple sclerosis (MS). MS, a chronic inflammatory disease, occurs commonly in young adults. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006